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Abstract 

In this study, we define the criteria for fund allocation in an investment portfolio based 

on three key issues: maximizing returns, minimising risk, and optimal asset allocation.  

The context of solving these issues reveals that the best solutions are not those that 

sequentially maximise or minimise each criterion but rather those that achieve an optimal 

compromise between them, known in the specialised literature as the Pareto front. 

To identify a set of nondominated solutions, we utilise a specialized evolutionary 

algorithm for multi-objective optimisation, the Nondominated Sorting Genetic Algorithm II 

(NSGA-II). This is a fast and elitist evolutionary algorithm based on a process of sorting and 

selecting the best agents for the repopulation of new solving sets. By using this algorithm, we 

generate different sets of possible solutions, also testing various mutation rates of the agents 

to study different approaches to favourable combinations for fund allocation. The subjects of 

these iterations will be a set of some of the most successful assets listed on the Bucharest 

Stock Exchange, simultaneously including a considerable part of the Bucharest Exchange 

Trading Index, over a period that encompasses both the COVID-19 pandemic and the 

Ukrainian war shocks. Subsequently, we evaluate the performance of these portfolio weights 

over time, analysing their performance and identifying differences in the evolutionary 

genome behaviour in comparison to the traditional Markovitz method of quadratic mean-

variance equation. 
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1. Introduction 

When speaking of financial time series, a set of particular characteristics must 

be taken into consideration, precisely their stochastic nature, given by a high 

sensitivity to shocks, the existence of volatility clustering, nonstationary structure, 

and ultimately inconsistent variability over time. Having said this, we can conclude 

the unpredictable nature of financial markets, ranging from sudden changes in prices 

and returns to unexpected changes due to policy decisions or market sentiments. 

To address such uncertainty issues, analysts and investors use vast quantitative 

models and statistical frameworks to continuously validate market models and 

identify vivid relations between different assets and the market.   

One way of preparing financial data for modelling is working with returns, 

discrete or continuous, instead of stock prices. Thus, we obtain a more desirable way 

to understand gains and an easier set of statistical properties to work with, as 

Campbell and MacKinlay (1997) highlight. The advantages of working with returns 

can be associated with operating within the risk dimension, obtaining the ability to 

directly observe the level of volatility in a given period while maintaining a data set 

with an average value and standard deviation close to 0 and 1.  

Past research and theorems assumed that financial markets are a stable economic 

environment and that all investors have an equal level of utility and risk aversion. 

In fact, this has been shown on many occasions to be otherwise. Independent of the 

specific problem at hand, one general problem which has been given much attention 

concerns how to optimally estimate portfolio weights. In particular, the problem in 

portfolio risk optimization consists of competing objectives that must be optimized, 

involving maximizing returns and minimizing risk. These two main objectives have 

been mathematically formalized by the mean-variance optimization problem of 

Markowitz in 1960 and have since then been extended to include a variety of 

constraints and additional considerations. Once again, the inadequacy of this method 

lies in the optimization under a set of traditional market hypotheses. 

The traditional optimization methods very often fail when we add real-life 

constraints. Already limiting the number of assets to invest in, which we will be 

considering in our further analysis, creates major problems for these methods. They 

might even turn computationally infeasible with the rising complexity of the 

constraints, turning even some of the cases into NP-hard (Weilong, 2023). 

With the enhancements made in computational processes, we are getting closer 

and closer to finding better ways of exploring the interactions between assets and 

financial markets. As noted above, our approach lies within the realm of 

evolutionary algorithms, which turned out to be very effective in solving 

computationally intensive tasks. Of these, the Nondominated Sorting Genetic 

Algorithm II is chosen in this work due to its remarkable efficiency in handling 

multi-objective optimisation problems with considerable efficiency. (Deb et al, 

2002). NSGA-II utilises a rapid non-dominated sorting method and a crowding 

distance mechanism to preserve solution diversity, making it well-suited for 

financial portfolio optimisation.  



Proceedings of the 7th International Conference on Economics and Social Sciences (2024), ISSN 2704-6524, pp. 682-691 

684 

As stated above, the constraints of our objectives are taken from the biobjective 

problem of mean-variation of Markovitz and, lastly, the taking into consideration of 

cardinal assets. Thus, we obtain a tri-objective optimisation issue. Numerous studies 

also took an approach to this matter by using evolutionary algorithms, noteworthy 

for this article that as inspiration the research of Anagnostopoulos & Mamanis 

(2010), in which they observe the performances of 3 MOEA’s methods (Multi 

Objective Evolutionary Algorithms). In our case, we will further observe how 

NSGA-II will compare with one traditional technique based on the quadratic  

mean-variation estimation of assets. By examining both approaches, we aim to 

highlight the advantages and limitations of the traditional efficient frontier method 

and demonstrate how evolutionary algorithms can offer robust solutions in the realm 

of financial portfolio optimisation.  

In the following sections, we will provide a brief explanation of how the 

constraints are integrated into the objective function, the operational mechanisms  

of genetic algorithms within this framework, and the computational methodology of 

our comparison counterpart. 

2. Multi-Objective Portfolio Optimisation  

In portfolio theory, the concept of an efficient portfolio is central to optimising 

returns while managing risk. According to the seminal work of Huang & 

Litzenberger (1988) an efficient portfolio is defined as one that lies on the portfolio 

frontier with an expected rate of return strictly higher than that of the minimum 

variance portfolio. To achieve that, we make use of the following constraints: 
 

   min 𝜌 (𝐱) = ∑ ∑ 𝑥𝑖𝑥𝑗𝜎𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

                                                                                                          (1) 

 

max 𝜇 (𝐱) = ∑ 𝑥𝑖𝜇𝑖

𝑛

𝑖=1

                                                                                                                      (2) 

For the formulations above, 𝜎 represents the variation and covariation of our 

assets, respectively, the risk they contain and 𝜇 symbolizes the expected return of 

one asset. Furthermore, the efficient portfolio is also limited by the fact that one 

must expend all his funds into this set of securities, therefore ∑ 𝑥𝑖𝑖 = 1. 

To further refine the portfolio, we incorporate the cardinality constraint aimed  

at minimising the number of assets with nonzero weights, thereby simplifying  

the portfolio and forcing the algorithm to choose the best ratio of risk and return  

for an assett. 

 𝑚𝑖𝑛 𝑐𝑎𝑟𝑑(𝐱) = ∑ 1𝑥𝑖
> 0

𝑛

𝑖=1

                                                                                                         (3) 

Evolutionary algorithms (EAs) are methods inspired by real-life processes, 

specifically the idea of natural selection and evolution (Coello, 2007). MOEAs are 

characterised by generating a set of Pareto-front solutions, focussing on finding  
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the best non-dominated outcomes. This approach ensures that all constraints are 

partially satisfied without having any single solution dominated by another.  

With this diversity we also obtain different ways the algorithm can build a portfolio, 

seeing how for every iteration a different approach is taken.  

An MOEA is called an elitist algorithm when it is able to generate new 

populations based on combining the best performing agents of past iterations.  

By doing this, each generation is slightly improving; later, we find an optimum point 

or we limit the number of simulations. 

3. Quadratic Problem for Mean-Variance 

The mean-variance optimisation framework is widely used in finance to 

construct efficient portfolios that provide the best possible return for a given level 

of risk (Elton, 2014). It can be formulated as a quadratic programming problem with 

the objective of minimising the portfolio variance subject to constraints on the 

expected return and the portfolio weights. The problem is states as the following 

(Huang & Litzenberger, 1988): 
 

min
𝐰

1

2
𝐰⊤Σ𝐰                                                                                                                                    (4) 

 

𝐰⊤𝜇 = 𝑝                                                                                                                                            (5) 

 

𝐰⊤𝟏 = 1                                                                                                                                            (6) 

 

It is stated that a portfolio is of frontier if and only if the weight vector of the 

portfolio is the solution of the quadratic equation. Consequently, we have the 

constraint for minimising risk, where w is the, then the p being the targeted 
expected return of portfolio.  

 

ℒ(𝐰, 𝜆1, 𝜆2) =
1

2
𝐰⊤Σ𝐰 − 𝜆1(𝐰⊤𝜇 − 𝑝) − 𝜆2(𝐰⊤𝟏 − 1)                                                     (7) 

 

The Lagrangian function incorporates the objective function and the constraints 

using Lagrange multipliers (λ_1 and λ_2). This formulation helps in solving the 

optimisation problem by finding the stationary points of the Lagrangian, which 

satisfy both the objective function and the constraints. 

Although the mean-variance optimisation formula pioneered in Modern 

Portfolio Theory, a set of significant drawbacks had been associated with it  

(Haugh, 2016). It is highly sensitive to input estimates of expected returns and 

covariances, at the same time being incapable of taking into account asymmetry  

and kurtosis, making the optimal asset allocations prone to significant changes  

with small estimation errors. Additionally, this is a static model that only relies  

on historical data for estimating only one outcome for asset allocation. Compared  

to our testing counterpart has a dynamic and can estimate different scenarios using 

the same initial dataset. 
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4. Empirical Results 

Our database consists of six assets, some of the best performing ones included in 

the Bucharest Exchange Trade Index (BET), having a proportion of around 60% of 

it. They have the following symbols: BRD, TLV, SNP, SNG, SNN, EL. BRD and 

TLV belong to the banking sector, while the other classify in the energy sector. 

For this study, we used a period of approximately 5 years, from 2019/01/04 to 

2024/03/19. This time axis also includes the effects of the COVID-19 pandemic and 

the Ukrainian war, thus having an even more volatile set of dates. 

It is also worth mentioning that this dataset was obtained from the Bucharest 

Stock Exchange (BVB) through a formal request for academic use of the 

information, ensuring the accuracy and relevance of the information used in  

this study. 
 

Figure 1. Daily Returns of Assets 

 
Source: Self-computed in RStudio using Plotly library (2024). 

 

Before computing the algorithm, we took a step back to analyse the average 

return of each series and its level of volatility. By visualising the monthly returns 

using boxplots, we observed that the mean returns tend to be positive, even though 

there were periods of increased volatility, particularly around significant global 

events such as the COVID-19 pandemic and the Ukraine war. This increased 

volatility can be attributed to the phenomenon of volatility clustering, as noted by 

Mandelbrot (1963), where periods of high uncertainty tend to be followed by even 

higher uncertainty. Letting the algorithm experience these effects will also 

demonstrate its ability to avoid risk and capacity to evaluate assets.  
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Figure 2. Monthly Returns of Assets. Boxplots representation 

 
Source: Self-computed in RStudio using Plotly library (2024). 

 

For the NSGA-II method, we performed three sets of simulations across four 

different mutation rate settings. In each simulation, a total of 1000 iterations were 

set, with a standard population size of 100. The crossover probability was 

maintained at 0.9 in all scenarios and mutation rates were established at 0.01,  

0.05, 0.10, and 0.15. 

Computational analysis was performed using RStudio, using the “nsga2R” 

library (Tsou, 2022) to execute NSGA-II simulations and the ‘series’ package 

(Trapletti, 2024) for traditional estimates. This implementation was inspired by the 

methodology outlined in Adyatama's work published in RPubs (2021), with the 

distinction of excluding a risk-free rate. The risk-free rate would typically act as a 

baseline for expected returns on risky assets, as they would be derived from 

governmental bonds (Damodaran, 2008). As a result, exclusion was necessitated by 

the extended time period over which the model was tested. 

Table 1. Estimated return of simulated portfolios 

Total returns  0.01 0.05 0.1 0.15 

I 0.00037 0.00064 0.00068 0.00065 

II 0.00088 0.00091 0.00091 0.00067 

III 0.00092 0.00054 0.00066 0.00063 

Source: Self-computed in RStudio, 2024. 
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Table 2. Estimated risk of simulated portfolios 

Risk  0.01 0.05 0.1 0.15 

I 0.00058 0.00014 0.00016 0.00015 

II 0.00014 0.00017 0.00032 0.00065 

III 0.00014 0.00018 0.00014 0.00016 

Source: Self-computed in RStudio, 2024. 
 

In the first table, we have arranged the results of simulated portfolio returns based 
on their number of simulations and the rate on mutation. This was done to study the 
randomness of each computation. In the following table we have the risk 
correspondence of each simulation. From this set we obtained both satisfying 
combinations of return/risk and lesser performing variants. Based on this, we have 
observed some patterns that suggest that the algorithm undergoes the most 
significant changes during the initial iterations of the simulated environment. Such 
behaviour can be attributed to the algorithm's exploration phase. As the iterations 
progress, the algorithm tends to exploit the most promising regions of the solution 
space, leading to a reduction in variability and a gradual convergence towards 
optimal or near-optimal solutions. 

In addition, we decided to extract the best options from each mutation rate value 
based solely on the performance of the returns. We did this because we want to study 
why the algorithm took such paths even when confronted with significant levels of 
risk, like the case of simulation II.0.15 where the risk is almost the same as the 
return, respectively, 0.00067 and 0.00065. 

From the results shown in Table 3, it appears that with a higher mutation rate, 
without being restricted in terms of minimum and maximum fund allocation for one 
asset, the algorithm tends to distribute most of its resources into two securities. 
Specifically, as the mutation rate increases from 0.01 to 0.15, we observe a 
significant concentration of weights in the SNN and SNP assets. 

This phenomenon can be attributed to the exploration-exploitation trade-off 
inherent in evolutionary algorithms. At higher mutation rates, the algorithm 
introduces more substantial changes in each iteration, increasing the diversity of the 
portfolio compositions. However, this can also lead to a higher likelihood of 
converging on a few highly dominant solutions, especially if those solutions appear 
to offer superior return-risk trade-offs early on. 

Table 3. Weights of portfolios 

 0.01 0.05 0.10 0.15 M-V equation 

BRD 0.037 0.024 0.175 0.026 0.087 

EL 0.134 0.009 0.059 0.223 0.200 

SNG 0.102 0.030 0.107 0.024 0.261 

SNN 0.315 0.235 0.521 0.662 0.188 

SNP 0.386 0.238 0.104 0.049 0.177 

TLV 0.026 0.464 0.034 0.016 0.088 

Source: Self-computed in RStudio, 2024. 
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In our case, the asset SNN seems to dominate the portfolio allocations at  

higher mutation rates. This could be due to these assets demonstrating favourable 

return characteristics that align well with the algorithm's objectives. The mutation 

rate of 0.15, in particular, shows a very pronounced allocation to SNN with a  

weight of 66.2%.  

On the other hand, the mean-variation method tends to spread the weights  

more evenly across multiple assets, with no single asset substantially dominating 

the portfolio. 
 

Figure 3. Wealth index representation 

 
Source: Self-computed in RStudio using Plotly library (2024). 

 

 

Lastly, we have generated five different portfolios based on the weight we 

obtained through simulation and the mean-variance method and tested their 

performance on the time axis. The wealth index was chosen to reflect how many 

times the portfolio grow in a time span while testing different structures. The y axis 

represents the percentage growth rate (x times, 1.5 = 150%). It is also noted that the 

output of the mean variance formula was a return of portfolio of 0.00075 and an 

overall risk of 0.00012. 

On a general note, NSGA-II managed to select more rewarding portfolios, even 

if all the simulations had a bigger risk ratio, some of them with a small increase, the 

ones with a mutation rate of 0.01% and 0.05%, they still found a better allocation of 

funds for a greater income. This shows how the mean-variance is a lot more focused 

on minimal risk rather than truly identifying the best option in fund allocation. 

It is also notable that the portfolios had the best overall performance, earning  

a multiplication of 4.56 times of initial investment for the highest mutation rate  

(red line) and the second highest of 4.03 (green line). Even if the return value of the 

initial simulation was 0.00092 for the green line and 0.00067 for the red, those 

results were caused by the higher risk rates of 0.00032 and 0.00065.  
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5. Conclusions  

The NSGA-II algorithm turned out to be a great solution for multiobjective 

optimization problems, thus creating different efficient scenarios with time and even 

handling higher ratios of risk. It arrives at high-return options and at the same time 

also gives some safer and lower-risk alternatives, therefore attracting many 

Investment strategies. 

In the present research, all the sets were created using a formula similar to the 

mean-variance equation with nonzero asset allocations. This flexibility makes 

NSGA-II search for an even larger space of feasible solutions and hence proves to 

be better in portfolio optimization. 

We amassed enough evidence to suggest that multi-objective evolutionary 

algorithms can detect even more complex solutions, given further research on 

constraints and adaptability. On the other hand, sensitivity to parameter settings and 

tendencies towards premature convergence are defects that cannot be ignored in 

NSGA-II. These limitations suggest that perhaps our model was not fitted for this 

portfolio performance test. 

Integration of long-term and short-term memory methods in stock behavior, 

dynamic portfolio structure over time, and conditional volatility would improve the 

performance of algorithms. Integrating methods for identifying long-term and short-

term memory in stock behaviour, dynamically altering portfolio structure over time, 

and taking into account conditional volatility could enhance algorithm performance. 

One way would be the integration of more advanced Machine Learning (ML) 

techniques like ARIMA or SARIMA for testing and identification of recurrent 

patterns or seasonal windows or even augmentation via neural networks (NN).   

These advancements could lead to more precise and reliable portfolio optimisation, 

benefiting investors with better-informed strategies. 
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